Picosecond Photodetectors: What can we learn from modern III-V semiconductor technologies?

Serge Oktyabrsky

SUNY College of Nanoscale Science and Engineering, Albany NY

Outline

- CNSE brief overview
- Applications of ps UV photodetectors
- Vertical vs. Lateral field PDs
- Fast APDs
- How to make ps single-photoelectron counting detector?
- III-V technologies challenges and breakthroughs
- Summary

CNSE OVERVIEW

Mr. Ross Goodman, Esq.
Assistant Vice President, Business Development and Economic Outreach
SUNY College of Nanoscale Science and Engineering

World Class Facilities

- > 1,000,000 sq.ft. of cutting-edge facilities, with 135,000 sq. ft. of 300mm and 450 mm cleanrooms with a current expansion to 1,300,000 sq. ft.
- More than 300 industry partners including electronics, energy, defense & biohealth
- Over \$17B investments and over 3,100 R&D jobs currently on site

CNSE's STATEWIDE NANO IMPACT

Cross-Disciplinary Mission

CNSE is dedicated to nanotechnology with constellations in:

- Nanoscience
- Nanoengineering
- Nanobioscience
- Nanoeconomics

Vision Leverage combined resources to establish effective partnerships that will enable realization of *industry* technology roadmaps and pioneering nanoscale research.

Mission Create a financially and technically competitive environment to empower the nanoelectronics industry with manufacturing advantages through vertically integrated partnerships.

NYS Governor Cuomo Announces Global 450 Consortia

- \$4.8 billion investment
 - \$4.4 billion pledged by IBM, Intel, TSMC, GlobalFoundries, Samsung
 - \$400 million pledged by NYS
- Intel to establish its East Coast headquarters in Albany to manage 450mm development.

R&D in Albany, Canandaigua, Utica, East Fishkill and Yorktown Heights.

2,700 new high-tech jobs, including:

- 800 at the CNSE
- 400 in Utica
- I,500 construction jobs in Albany

CNSE Site Expansion

Picosecond near UV Semiconductor **Photodetectors: Applications**

Applications for ultra-fast UV photodetectors:

- High energy physics
 - LAr and LXe detectors
 - Fast crystal calorimetry: many inorganic scintillators, i.e. BaF₂, emit in UV
 - Cherenkov detectors
- Space research
- Medical TOF imaging and tomography
 - TOF positron emission tomography
 - Fast gamma imaging/TOF tomography

Scintillator emission

Δt average time between photons = jitter $\Delta t = k \frac{\tau_{sc}}{N_{sc} K_{eff}}$ Optical jitter and scintillator energy

> K_{eff} – system collection efficiency τ_{sc} – scintillator decay time N_{sc} - scintillator photon yield $k\sim1$ coefficient close to unity

> > (statistics dependent)

Example: Projected time resolution for TOF PET

Need: Semiconductor UV/Vis single photoelectron detector with ps resolution

	Decay time (ns)	Light output (ph./MeV)	Δt at K_{eff} =0.2 & 0.5 MeV (ps)
LYSO	40	40,000	10
BaF ₂ (fast component)	0.9	1400	6
LaBr ₃ (Ce)	16	70,000	3
CsBr	0.07	20	35

transfer

Materials: Bulk Properties

0.50

0.60

0.70

0.80

0.90

1.00

1.30

1.55

2.00

3.00

5.00

6.6

CdTe

6.4

Attractive material parameters are similar for **MOSFETs** and ultrafast PDs

300 K Electron Transport Properties

300 K Hole Transport Properties

Journal Processing Control of Con									
	E_g , eV	$m_{e(-t)}$	m _{e-(l)}	μ_e , cm ² /Vs	$V_{e,sat}$, $10^7 cm/s$	m_{hh}	m_{lh}	$m_{hh\text{-}in_pl}$	μ_h , cm ² /Vs
Si	1.12	0.19	0.98	1350	0.7	0.54	0.15	0.22	460
Ge	0.66	0.082	1.64	3900	0.7	0.34	0.043	0.057	1900
GaAs	1.42	0.067	-	8500	2	0.53	0.08	0.11	400
InP	1.35	0.079	-	5900	2.4	0.56	0.12	0.16	150
In _{0.53} GaAs	0.8	0.04) -	14000	2.9	0.36	0.041	0.052	400
InAs	0.36	0.027	-	33000	3.5	0.4	0.026	0.035	450
GaSb	0.73	0.041	-	3750		0.8	0.05	0.055	680
InSb	0.17	0.013	-	77000	5.0	0.42	0.016	0.020	850

Materials: Saturation Velocity

Drift velocity

Saturation velocity and necessary operating voltage for 10ps risetime

Material	Saturation field, kV/cm	Spacing for 10ps, µm	Operating Voltage,V
Si	20	0.7	1.4
GaN	150	1.4	21*
GaAs	3.5	2	0.7
InP	12	2.3	2.6
InGaAs	5	3	1.5

^{*} For GaN operating voltage should be further increased due to longer absorption lengths and lower mobility

Saturation velocity – limited electron drift time (TOF)

Experimental data from:

III-V MSMs (lateral field): Ralph 1992, Zeghbroeck 1988, Chou 1992, Gallo 2013,

Absorption

Absorption coefficients in semiconductors

[Carruthers, Electro-Optics Handbook]

- In the region λ <360nm the absorption takes place within <100 A
- Highly-doped layer in p-i-n or APD structures kills efficiency
- Evolution of carriers is strongly affected by the surface/interface recombination, relaxation in the Brillouin zone close to the surface
- Si has the highest α in UV and the lowest in visible \rightarrow the worst material for fast PDs
- Detectors with lateral field are of great interest for (near)-UV

UV QE Enhancement in Si

Quantum efficiency of UV-enhanced (delta-doped) CCDs 4x4 μm² pixel [JPL]

Nikzad et al. Appl. Optics 51 365(2012); Proc. SPIE 2198 907 (1994).

- Making a thin inversion layer increases UV efficiency but also increases sheet resistance
- Sheet resistance is high $\sim 10 \text{ k}\Omega/\text{sq}$.
- Fine in slow devices, but series resistance kills leading front

Geometry: Lateral vs. Vertical

Top and bottom contacts	
Field normal to the surface	•

Vertical (p-i-n)	Lateral (MSM)		
Large area contact, usually thin depletion layer, higher C	Small area contact, large gaps between electrodes, lower C		
Surface dead layer due to top contact, bad for UV	No dead layer, large exposed surface, surface recombination		
3D device, requires special packaging	Planar device, compatible with FET process, simple integration		
Most common semiconductor detector type	Some designs commercially available, e.g. MSM's or Si drift detectors		

Silicon Drift Detector with integrated transistor [from PulseTor.com]

Metal-Semiconductor-Metal (MSM) PD

 The simplest lateral field detector is MSM structure which is back-to-back connected Schottky diodes

Advantages

- Low capacitance per unit area
- Lack of dead contact layer (important to absorption coefficients α>10⁶ cm⁻¹
 → 10nm absorption length)
- Reduced volume for generation-related dark current (in particular QW structures)
- Planarity, compatibility with FET process flow

Disadvantages

- Reflection from surface metal contacts
- Surface states enhance generation/recombination, reduce efficiency and increase dark current
- Metal-semiconductor interface is the origin of traps and leakage

Metal-Semiconductor-Metal (MSM) PDs

Zeghbroeck et al., EDL 1988 GaAs MSM: 105 GHz, 5 ps (drift limited)

Hamamatsu GaAs MSM 30 ps FWHM

Chou et al., APL 1992 LT-GaAs MSM: 0.87ps

Advanced Laser Diode Systems InGaAs MSM: 20ps FWHMz

MSM PD: Capacitance

Capacitance of MSM device:

$$C = \frac{K(k)}{K(\sqrt{1-k^2})} \frac{\varepsilon_0(\varepsilon+1)A}{4(L+W)}$$

$$K(k) = \int_{0}^{\pi/2} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$

$$k = \tan^2 \frac{\pi W}{4(L+W)}$$

- MSM shows ~5x reduction of device capacitance (vs. pin) for the same drift length
- Capacitance reduction for the same TOF*: 15x as compared to Si p-i-n.

*TOF- Electron time-of-flight or drift time

Dark current

Shot noise is the major intrinsic noise source

$$\left\langle i_{PD_noise}^{2} \right\rangle = \left(2qI_{tot} + \frac{4kT}{R_{eq}} \right) \Delta f \xrightarrow{\text{small signal}} 2qI_{dark} \Delta f$$

 Dark current in MSM is mostly due to thermionic emission over the Schottky barrier

$$J_{thermionic} \sim T^2 \exp\left(-\frac{q\phi_B}{kT}\right)$$

$$\phi_N^l \uparrow$$

$$\phi_P^l \downarrow$$

$$\phi_P$$

- Use of a contact on higher bandgap semiconductor (AlGaAs or AlInAs) lowers the dark current
- The lowest dark current in InAlAs/InGaAs heterostructure

$$4.5 \times 10^{-6} \text{ A/cm}^2 \text{ [Kim et al.TED 51 351 (2004)]}$$

• Compare to 5×10^{-11} A/cm² for Si p-i-n PDs

Dark curent in GaAs MSM

[Ito et al. JQE 22 1073 (1986)]

Dark current

5 nm

• It can be further reduced by introducing p-n junctions instead of Schottky junctions

magnitude to $\sim 100 \text{ el/s-}\mu\text{m}^2$

- Feasible to have one heterojunction and another Schottky junction
- Then dark current is limited by generation current:

$$I_{SHR} = qV_{depletion} \frac{n_i}{2\tau_o}$$

Dark currents in p-i-n PDs

Dark current in Si p-i-n PD

S1227 series

Dark current = 0.1nA/cm²

Dark current in GaAs p-i-n PD

[kyosemi.co.jp]

Generation dark current in W=0.5 μm pin diodes

Material	<i>n_i</i> , cm ⁻³	$ au_{SHR},\mathrm{s}$	$J_{GR,} \ { m A/cm^2}$
Si	1.5×10^{10}	10-3	6x10 ⁻¹¹
GaAs	1.8×10^6	10-8	7x10 ⁻¹⁰
Al _{0.3} GaAs	$1.7x10^3$	10-10	7x10 ⁻¹¹

$$J_{GR} \approx qW \frac{n_i}{2\tau_{SHR}}$$

- Reverse current is ~2 orders of magnitude higher in GaAs than in Si p-i-n's
- There are number of reports of lower reverse currents, i.e. ~50 pA/cm² in p+-p-n+ [Chen et al. J. Phys.D, 44 215303 (2011)]
- Generation current is scaling as volume of the depletion region. Effective volume can be reduced in lateral structure

Si APDs: State-of-the-Art

From D. Hitlin, CalTech/RMD/JPL, 2013

Reach-Through Avalanche Photodiode (RTAPD)

Reverse biased photodiode with $p^+\pi pn^+$ structure

Next step: Sensor Partitioning

RMD SSPM: 130 fF/pixel (pixel size ~50μm)

KETEC SSPM

SSPM: APD array in parallel

[From: "Scintillation Detectors", U. of Heidelberg]

- Geiger-mode: Gain ~106
- ns-range device: best jitter ~100ps

AdvanSiD SSPM

Hamamatsu SSPM:

State of the art: Digital SiPM

Philips Digital SSPM

[From: www.research.philips.com and PDPC presentation, 2012]

Digital Silicon Photomultiplier Detector

- Digital SiPM: each pixel contains its own electronics
- Low parasitic capacitance → reduced gain → improved stability

Fast APDs: Multiplication Buildup

- Multiple transits in APDs reduce speed (multiplication buildup time)
- Geiger mode does not provide benefits
- Multiplication length can be reduced to >100nm to increase speed
- Demonstrated gain-bandwidth product ~300-400 GHz

Fast APDs: S/N for single photoelectron detection

$$V_{ph} = \frac{I_{ph}\tau}{C} \xrightarrow{\text{single p.e.}} \frac{Me}{C} \qquad R_{eq}C << \tau$$

$$v_{noise}^2 = 4\pi k T R_{eq} \Delta f$$

Dependent parameters:

- Fixed **rise time** τ limits **multiplication** M (fixed GBP)
- Multiplication M determines total charge at amplifier input
- Signal voltage determined by charging the capacitor
- Noise of an amplifier input determines maximum capacitance

Limited room for variations!

- Capacitances of ~10 fF are needed to obtain reasonable S/N ratio at low M's
- Need for low-C integration of the PD with amplifier → monolithic integration

For single photoelectron detection for GBP= 300 GHz

For S/N = 1: M=20 C=20 fF

Improvement of APD noise: $Al_{0.8}Ga_{0.2}As/GaAs$

Exceess noise in III-V APDs

[Xi, PhD thesis U. Sheffield, 2012]

Comparison of Al_{0.8}Ga_{0.2}As and comercial InP APDs

[from J. David, U. Sheffield, 2003]

- Commercial InP-based APD give excess noise of $k_i = \sim 0.7$
- Much lower excess noise can be obtained with wider bandgap III-V's,
 e.g. Al_{0.8}Ga_{0.2}As as avalanche medium

M

Concept for ps APD

PD Integration

Integration with a transistor amplifier:

- FET uses same basic technology
- Possibly uses same QW as a photodetector
- Area separated by insulating trench or implant within the same pixel
- Integration of planar detector with FET previously demonstrated

Integration of GaAs MSM with MESFET

[Ito et al. APL 47 1129 (1985)]

Integration of InGaAs MSM with HEMT

[Kato,TMTT 47 1265 (1999)]

PD Integration: Si platform

Finally: Partitioning and Integration with electronics (Si)

Face-up mounting of thinned GaAs wafer to Si

- Larger openings to run conductors to Si
- Still front side illumination
- Lost system area for electrical connections

- Established technology using solder bumps, e.g. for FPAs
- Backfill with polymer for mechanical stability
- Minimizes interconnect problem
- Requires precise substrate removal: oxidation lift-off

III-V Materials in Mainstream (Si) Electronics

III-V MOSFETs (and FinFETs) is extremely hot and fast developing topic pursued by many IC manufactures: INTEL, GlobalFoundries, IBM, TSMC, Samsung...

Tool manufactures (AMAT, TEL,...)
and pilot IC R&D's (Sematech,
IMEC) are adapting existing Si
technologies / toolsets for III-V's

INTEL InGaAs FinFET (2010)

IMEC's InGaAs FinFET (2013)

2010

Si Industry - First III-V MOCVD Laboratory

Aixtron 300mm MOCVD tool for III-V on silicon processes

Aixtron G5 HT MOCVD* system operated by SEMATECH and CNSE:

- III-As and III-N growths
- MO and hydride precursors
- In-situ cleaning

300 mm Si wafer and shower-head

Integration on Si: from R. Hill, Sematech 2013

III-V and III-N on Si for beyond CMOS

Heterointegration of III-V materials enables advanced SOC

Molecular Beam Epitaxy (MBE) Laboratory

As MBE chamber

Sb-As MBE chamber

MBE transfer module

UHV transfer module

- MBE Veeco Gen II system:
 - Duo-chamber MBE system for As- and Sb- based III-V's
 - Triple-magnetron sputtering chamber (HfO₂, TaN, TiW)
 - Reactive e-beam evaporator (HfO₂ and Al₂O₃)

Compound Semiconductor Materials and Devices: Examples

Shape-engineered QD

Materials/Technologies

- MBE III-As and III-Sb
- Entire in-house processing
- Heterostructures
- In-situ (UHV):
- o High-k oxides
- **Contacts and Metallization**

Quantum dots - related application

- Tunnel-coupled QD-QW VCSEL
- QD SLED for OCT
- Media with controlled photoelectron kinetics

Electronic devices III-V high-k MOSFETs

- In-situ high-k oxide for n-MOSFET
- High-mobility p-MOSFET
- Regrown source/drain

HfO₂/InGaAs with

10Gb/s eye diagram

VCSEL-Modulator

Photonic devices

- Cavity optical decoupling approach: duo-cavity VCSELmodulator
- Q-switching with intracavity modulator
- Bragg MQW lattice
- QWIPs/QDIPs
- QD solar cells

III-V/Oxide Interfaces: Challenges

- High quality interface with dielectric (as SiO_2/Si):
 - Low surface recombination rate
 - Low density of interface states
 - High thermal and chemical stability of the interface

- ~8000-15000 cm²/V-s in GaAs or InGaAs
 - ~1500-2000 cm²/V-s in GaAs or InGaAs

 TiN/SiO₂

 m*

 TiN/HfO₂ (IL=7A)

 T=300K, 325K, 350K, 375K, 400K, 425K, 450K

 0 2×10⁵ 4×10⁵ 6×10⁵ 8×10⁵ 1×10⁶ 1.2×10⁶

 Effective field E_{cr} (V/cm)

- o Improvement of channel transport:
 - Low mass: Scattering Coulomb, roughness, remote soft phonons
 - Buried channel
- S-D resistance
 - Regrown InAs for n-type or InSb on ptype
 - Epi-SD and gate-last flow

spacer

GaAs/high-k Interfaces: Surface recombination

RT Photoluminescence and Internal Efficiency of GaAs with Different Surfaces

[Passlack, in "Materials Fundamentals of Gate Dielectrics..." 2005]

- Air exposed surface has high recombination velocity → kills photocarriers
- Great (~4-5 orders) reduction of the surface recombination demonstrated with various passivation techniques

a-Si Interface Passivation of High-k/GaAs interface

1.5 nm a-Si on GaAs + PVD HfO₂

Angle-resolved As 2p XPS spectra and CV's

$\overline{|AsO_x|}_{|As}$ Angle to sample-normal 0 Å Si Intenity, a.u. AsSiO, 15 Å Si 1330 1325 1320 Binding energy, eV

Fermi level is pinned

Fermi level is not pinned

Wallace and Vogel groups, UTD

Removal of As-O with a-Si deposition

Eff. mobility vs. different passivation

Koveshnikov ,APL 88, 022106 (2006) Oktyabrsky, Mat. Sci. Eng. B, 135 272 (2006)

Hinkle, APL 92, 071901 (2008) Milojevic, APL 93, 202902; 252905 (2008) Sonnet. Microel. Eng. 88, 1083 (2011)

ALD Al₂O₃: "TMA Self-Cleaning"

UHV STM and STS of TMA-exposed InGaAs surface (Kummel group, UCSD)

In-situ XPS and C-V (Wallace and Vogel groups, UTD)

- Saturation dose of TMA results in a near monolayer coverage with no substrate atom displacement
- TMA dosing restores the Fermi level to the CB edge
- TMA is efficient to remove Ga- and As-oxides
- As-As dimers is the major component left

HfO₂/a-Si/GaAs High-k Gate Stack

III-V Processing

E-beam lithography process for FinFET fabrication

E-beam exposure using Vistec VB 300

 NEB and HSQ negative resists: Fin Width down to 50 nm

Plasma etching of hard mask pattern into InGaAs

- CH₄/H₂/Ar recipe optimized for smooth, vertical sidewalls
- Damage removal with diluted piranha wet etch

Ion Damage Removal

RIE damage removal after CH₄/H₂/Ar etch

- 1μm n-In_{0.53}GaAs on n-GaAs MOS Capacitor
- Diluted Piranha = similar CV to as-grown surface
- CV characteristics restored

STEM/EDX of gate-last MOSFET

- Gate-last flow MOSFET with epi p+-GaSb SD and InAs etch stop layer
- After TMAH recess etch, InAs (1.5nm) is present on the surface

Oxidation Lift-off Technology

FIB cross-sections of the device fabricated by oxidation lift-off technique.

- Bonding by Au-Ge eutectic or polymer
- Bonding, device separation and formation of the oxide isolation I the same process

SUNY COLLEGE OF NANOSCALE SCIENCE AND ENGINEERING

Conclusions

- Group III-V technologies are rapidly progressing towards mainstream logic ICs
- III-V materials have credible benefits for photodetectors:
 - High carrier velocity,
 - Low saturation field
- Planar lateral field architecture is beneficial for fast UV PD
 - Low capacitance
 - Transport close to the surface
 - Reduced volume for current
- Materials benefits + Available technologies => ps PDs?

Acknowledgements

CNSE students

- Alex Varghese
- Rama Kambhampati (GF)
- Andrew Greene
- Shailesh Madisetti
- Thenappan Chidambaram

CNSE Staff

- Michael Yakimov
- Vadim Tokranov
- Shun Sasaki

Funding:

- NSF
- AFOSR
- SRC
- INTEL
- GLOBALFOUNDRIES

Academia collaborators

- Peide Ye (Purdue)
- Jesus del Alamo (MIT)
- Jack Lee (UTexas at Austin)
- Darrel Schlom (Cornell)
- Nikolai Faleev (Arizona State)

Industrial collaborators

- Sergei Koveshnikov (Intel)
- Dmitry Veksler (Sematech)
- Niti Goel (Intel)
- Ajey Jacob (GF)
- Steven Bentley (GF)

Many thanks to FNAL

- Pavel Murat
- Erik Ramberg